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ABSTRACT 

It is shown that a strongly continuous semi-group of nonlinear nonexpansive 
operators cart be constructed as limn.~oo ((1 + t/nB) -1 (I + t/nA)-l) n 
where A is a linear m-accretive operator, B is a nonlinear m-accretive opera- 
tor, and B satisfies a boundedness condition relative to .4. 

Introduction 

The objective of this paper is to investigate the perturbation of a linear m- 

accretive operator A by a nonlinear m-accretive operator B in a general Banach 

space X. Many authors have studied perturbation theory for nonlinear accretive 

operators in general Banach spaces and some of these are listed in our references. 

The basic condition used in such investigations is that B be bounded or continuous 

relative to A in some sense which is a nonlinear analogue to the basic condition 

employed in the perturbation theory of linear accretive operators. Our results 

relate to the relatively regular case of I. Segal ]-10] and T. Kato [--7], In their work 

it is required that B be continuous'.y Frechet differentiable from [D(A)] to X (or 

similar types of conditions), where [D(A)] denotes the domain of A regarded as a 

Banach space with graph norm I[ x I[ + II A x  [1" The basic conditions of our work 

here are that I[ a B x  II satisfy a boundedness condition and that B be continuous 

from [-D(A)] to X. 

1. Definitions and theorems 

In what follows (X, [I II) will denote a Banach space with norm II I1" If  B is an 
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operator (possibly nonlinear) from X to X we will denote by D(B) the domain of  

B and by R(B) the range of B. 

DErINmON 1.1. An operator B: X--. X is said to be accretive on X provided 

that 

(1.1) II(z + 2 B ) x - ( I  + 2B)y[[ __> [ i x -  y[[ for all x, yeD(B)  and 2 >0 .  

If  in addition, R(I + 2B) = X for all 2 > 0, we say that B is m-accretive. 

DEFINITION 1.2. By a strongly continuous semi-group of nonexpansive opera- 

tors U(O, t >= O, on X we mean a function U from [0, oo) x X to X such that (1) 

U(OU(s)x = U(t + s)x for all t,s >=0, x e X ;  (2) limt_.o + U(Ox = U(O)x = x for 

all x e X ;  and (3) [I U ( t ) x -  U(t)y[] _< I [x -  Yll for all x , y ~ X ,  t>=O. The in- 

finitesimal generator of U(O, t >= O, is the function B: x ~ limt-,o + (1/0 (U(O - I)x, 

defined for all x for which this limit exists. 

The main theorem which we prove is the following: 

TREOREra 1.1. Suppose that A is an m-accretive linear operator on X,  B 

is an m-accretive nonlinear operator on X,  BO = O, and D is a dense subset of  X 

such that 

(1.3) D c_ D(A) n D(AB) and 0 ~ D; 

(1.4) ( I + 2 B ) - l ( l + 2 A ) - l ( D ) ~ _ D f o r a l l  2 > 0; 

(1.5) [I 11o is a norm on D such that (I + 2A) -1 and (I + 2B) -1 

are [I []o-nonexpansive on D for all 2 > 0; 

(1.6) There is an increasing function L: [0, oo) ~ [0, oo) such 

that for all x ~ D, II ABx I1 < L(II x II0) II ~x I1. 

Then, for  all x s X  and t > 0 

(1.7) U(Ox = limn-, o~((I + (t/n)B)- ~(I + ( t /n)A)-  ~)n x 

exists, the convergence is uniform on bounded t-intervals, and U(t), t >__ O, is a 

strongly continuous semi-group of nonlinear nonexpansive operators on X.  

We will use the methods ofM. Crandall and T. Liggett [4] to prove Theorem 1.1. 
First we establish the following lemma: 

LEMMA 1.2. Suppose that A is an m-accretive linear operator on X,  B is a 

nonlinear m-accretive operator on X,  x ~ D(A) ~ D(AB), and there exist positive 
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constants M and 20 such that for  0 < 2 < 2 0 ,  n - - i , 2 , . . . ,  and l <k<_n,  

((I + (2/n)B)- l(I  + (2/n)A)-l)kx ~ D(A) and 

(1.8) I[ AB((I + (2In)B) -1 (I + (2/n)A)-l)kx [I < M. 

Then, for  0 < t < 20 

(1.9) U(t)x = limn~o~((I + (t /n)B)-1(1 + (t /n)A)-1)nx exists, and 

(1.10) I[ u(t)x - U(C)x [I <= 2(Jlhxl[ + l[ Bx ll)l t - t'l for  O <_ t < t' <-20. 

PROOF. Henceforth we shall use the notation that  for 2 > 0, J~ = (I+2B) -1 

(I + 2A)- 1. We first observe that  J~/nx ~ D(A) implies J;~.,x ~ D(AB), since D(A) is a 

linear subspace of  X and 

(I - ( I  + (2/n)B)-X)(l +(2/n)A)-ljkz/~tx = (2/n)BJ~nx. 

Next we establish the identity, for 0 < p < 2 and d~x e D(A) 

(1.11) J~x = d,((#/2)x + ((2 - #)/2)J~x - #(2 - #)aBJxx ). 

We shall use from [4] (Lemma 1.2-(iv)) the fact that  

(I + #B) (I + 2B)- 1 = (# 12)1 + ((2 - #)/2) (I + 2B)- 1. 

Set 

(I + #A) (1 + #B)J~x 

= (I + #A) ((#/2) (I + 2 A ) - l x  + ((2 - #)/2)Jax) 

= (#/2)  ( ( # / 2 ) x  + ((2 - # ) / 2 )  (I + 2 A ) -  Ix) + ((2 - # ) / 2 )  (I + #a)J~x 

= (p/2) ((V/2)x +((2 - #)/2) (x - 2A(I + 2A)- tx))  + ((2 - #)/2) (I + #a) dax 

= (#/2)x - ~ / 2 )  (2 - #)a(t  + 2 A ) - l x  + ((2 - #)/2)Jax + (#/2) (2 - #)AJax 

= (#/2)x + ((2 - # ) / 2 ) J~x -  # (2 - #)aBJax. 

We next establish the inequality, for x ~ D(A) n D(AB), 2 > 0, and k > 1, 

k 

IIJ x-xll--< x IIJax-xll 
i = 1  

k 

(1.12) < ]~ [ I x - ( I  + 2A)( I  + ZB)x][ 
i = 1  

=< k2([ I Ax [! + 1[ Bx [I ) + k22H ABx i[" 

Now let 0 < # < 2, k, j  > O, and define ak.j = I[ J,Jx - f i x  []. Next let ~ = #/2,  and 

13 = 1 - ~. I f n  > j  > 1 and m >_ k > 1, then from (1.11) 
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ak,.i = [1 J ]x  -- J~,((I.t/)`)J~-ix + (()` - #) /2)J~x - / a  (2 - p)ABJ~x)  l[ 

=< (~,/)`) II ~ - '  x -  J~-'x 11 + ((~ - ~,)/)`)II Jg~-' x-J~xll 
+ ~()`- ~) II ABJ:x 

Otak_l , j_  1 + f lag , j_  1 + ~ ()` -- #)M. 

By Lemma A in the Appendix of 16] we obtain, for m < n, 

�9 (~ a, n < ~ ~,fln-., IIJr-Jx - x l l  
' j = O  , J  

�9 J: x -xH 
j=m 

n--I ( m - l )  ^ �9 

and by Lemma 2.1 of [6] and by (1.12) above we obtain 

j=o j ((m - J)'~(ll Ax 11 + I1Bx 11) + (m - j ) ) `2M) 

+ ~ ..mo,-mZj--1) IIBx - J )  )`2M) i=-  ~ p l ,m-  ((n -j)~,(ll Ax 1[ + II) + (n 

+ np(2 - p)M 

< ((n~ - m) 2 + n~)~()`(ll hx II + II nx II) + ) ` 2 ~  
+ ((mfl/o~ 2) + ( (mf l ) /~  + m - ~)~)~(~(ll Ax II + II nx II) +/a2M) 

+np( ) `  - #)M 

= ((n# - )`m) z -I- n/a 0.  -/a))~([I Ax II + II nx II § 

+ (m)` ()`-#) + (m)`-n/a)~)~(ll ax I1 + II nx II + ~,M)+,,,()`-~,)M. 

Taking/t  = t/n and )  ̀= t/m where 0 < t < 20 and n > m, we obtain 

II J,,.x - J,~~ II 
(~.13) ~ tO/m- 1/,)*(211Axll +211Bxll + ( , /m)M +(t/n)M) 

+ t z (1 /m-  1/n)M 

and so lim.~oj,~nx exists. Taking n = m, 0 < t < t' < 20,/t =t/n, )` = t'/n, and 

letting n-* oo, we obtain (1.10). 

PROOF OF THEOREM 1.l. First observe that [I (I + 2 B ) - ' x  [1 =< II 4 for all 
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x e X and {t (I + 2B)- ix  IIo < II x IIo for all x e O, since B0 = 0. Next, if x e D and 

0 < 2 < 1/L([[ x [Io), then 

which implies that 

< [] A(I  + 2A)-Ix 11 + 211ABJax 1] 

-<- II Ax II + 2L(I[ Jzx I[o) !l AJax il 

< [] a x  1{ + 2L(l~ x I1o)II Ajax  11' 

II ASzx II = (~ - ~'~<11 x !1o>>-~11 Ax Ii. 
Thus, if x ~ D, 2 > 0, n > 2L(II x [[o), and 1 < k -< n, then 

II as~,.x II ~ (~ - ( ~  J.>ull ~ IIo))-~!1 Ax I!. 
which implies that 

(1.14) IIABJ~++I] ~ L(llJ~,,llo)llAJ~,.xll 
< L(II x Iio) (1 - (~ ]n)L(]} x I]o))-k]l Ax  ]1" 

By Lemma 1.2, if x eD  and 2 > 0, then lim._+Jz'/.x exists. Since D is dense in X 

and the Jz's are nonexpansive on X,  limn-,oj~,.x exists for all x e X  and all 2 > 0. 

Define U(t)x = lim._.+J~,x for x e X, t > 0. Obviously the nonlinear operators 

U(t), t > 0, are nonexpansive as the strong limits of nonexpansive operators, To 

see that U(t), t _> 0, is strongly continuous we first note that if x eD,  then (1.10) 

yields the strong continuity of U(t)x, t > 0. Then the facts that U(t), t >~ 0, are 

nonexpansive and D(A) n D(AB) is dense in X yield the strong continuity for all 

x eX.  Finally, we verify that U(t + s) = U(O U(s), t, s > O. Following [4] we have 

for t > 0, m, n positive integers, and x e X, 

( U ( t ) ) %  - " . . �9 m " x  - h m . _ , . ( g , / . )  x = h m n _ . . ( g , / . )  

which implies 

U(mt) " . �9 ~,k = limk-.| (J~k) ~ U(O'. = l l m n ~ o o  Jmt/n --" l l m k - *  ~ Jmt/mk ~- 

Let l, k, m, n be positive integers and then 

U(I/k  + re~n) = U((In + mk) /kn)  = (U(1/kn)) z"+k" 

= (U(I [kn))~"(U(1 [kn)) m = U(l /k)  U(m/n). 

Thus, U(t + s)x = U(O U(s)x where t, s are rational numbers and so by the strong 

continuity and nonexpansive property of U(O, t > O, U(t+ s)x = U(t) U(s)x for 



242 G.F.  WEBB Israel J. Math., 

for all t, s > 0, x s X. Therefore, U(t), t > O, is a strongly continuous semi-group 

of nonexpansive operators on X and the proof of Theorem 1.1 is complete. 

We next investigate the relationship of the semi-group U(t), t >= 0 (constructed 

in Theorem 1.1) to A + B. With additional hypothesis on A and B, we can show 

that the infinitesimal generator of U(O, t > O, extends - (A + B). We first require 

the following. 

DEFINmON 1.3. Suppose that A is an operator on X, B is an operator on X, 

and D c_ D ( A ) n  D(B). We define B to be A-continuous on D to mean that if 

X {- n}, =1 is a sequence in D, x0 ~ D, x, ~ xo, and Ax,  ~ Axo, then Bx, ---, Bxo. 

THEOREM 1.4. Suppose that the hypothesis of  Theorem 1.1 is satisfied. 

Suppose further that B is A-continuous on D. Let C be the infinitesimal 9en- 

erator of U(t), t >= O. Then, D ~ D(C) and - Cx = (A + B) x for all x s D. 

PP.eOF. We first prove that for any x s X  

(1.15) lim,_.o] [ (I + (t]n)A)-kx -- x I1 = 0 

uniformly for all n = 1,2, .-., and 1 _< k _< n. But since D(A) is dense in X and 

(I + (tin)A) -k is a contraction, it suffices to prove the result for x ~ D(A), in which 

case it follows from 

I1(I -4-(t /n)A)-kx--xl[  

k 

<= X II (I + ( t /n)a)- 'x - (I + ( t / n ) A ) - " - ' x  li 
i = l  

< kll(l + ( t / n ) A ) - l x - x l l  

< (kt /n)II~x[I--<'l lAxll  

Next we note the tbllowing identity (which one proves by induction): For 

n = 1,2,.. . ,  1 < i < n, x ~ X ,  and t > 0, 

i 
(1.16/ i J,/,x = (I + (t/n)A)-~x - (t/n) Z (I + (t/n)A) -~ 

k = l  

We will use these facts below to show that if x s D then, 

(1.17) lim,..ol [ (1/t) (U(t)x - x) + (A + B)x 1[ = O. 

It suffices to show that for any decreasing sequence of 

{tm},~= 1 converging to 0 

positive numbers 

(1.18/ limm-.oo[[ (1/tm)(U(tm)X - x) + (A + B)x [I = O. 
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Let x ~ D, {tm}~ = 1 decrease to 0, and e > 0. By virtue of (1.13) and (1.14), we have 

that for all m = 1,2,.. . ,  n = 1,2, .-., 

II V(,m)X - j,'.~ I1 
<__ t,~(1/.:(211Ax II + 211Bx II + ('m/.)M) + t~(1/n)M 

where M depends only on x and the sequence {tm}m~=x. Thus, there exists an n 

such that 

(1.19) (1/ t , , ) l iU(t , , )x-Jt~/nxi!<e/4 for all m = 1 , 2 , . . . .  

Then, for all m = 1,2,.. . ,  

II (1/tm) (U(tm)X - X) -I- (A + B)x [I 

< 8/4 + [I (1/tm)(at~l.X -- X) + (el +B)x 1[ 

= e/4 + [i (1/t=)((I + (t.,/n)A)-nx - x 

- (t,./n) ?E (I + (tm/n)A)-("-~ + (A + B)x [[ 
i=1 

5 e/4 + II (1 ~tin) ( I  + (t:,./n)A)-~x - x) + Ax [I 

+ (1 In) ~ I[ ([ + (tm/n)A)-(n-O BJ:,.InX - Bx l[ 
i = l  

(1.20) < e / 4 +  I I (1 / tm)( I+( tm/n)A)-nx-x)+Ax[I  

(1.21) +(l/n) ~ IIBaL:ox-Bxll 
i=1 

(1.22) +(I/n) ~: II(I+(tmln)a)-~"-~ 
i=1 

Then, there exists m 1 such that the second term of (1.20) < e/4 for all m > m t by 

virtue of (1.15) and the following inequality: 

II (1/tin) (1 + (tm/n)A)-nx -- X) + Ax[I 

(1.23) = [[(1/tm)(tm/n ) ~ A(I §  Axll 
i=1 

< ( l / n ) ~  [ l ( l+( tm/n)A) - 'Ax-Ax[ I .  
i=1 

Next, there exists m2 such that (1.21) < ~,/4 for all m > m 2 by virtue of the facts 

that B is A continuous, (1.12), (1.14), (1.23), and the following inequalities: 
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i 
= I[ A((I + (tm/n)A)-~ - -  (tm/n) ~ (I + (tm/n)A)-(i-k)BJtkm/nx ) - -  Ax I[ 

k=l 

:< [I a + ( t . / . ) A ) - ' A x  - A x  II 
f 

+ (tm/") Z II (I + (tm/n)A)-(i-k)AWJ~m/nx [] 
k=l 

=< II (i + ( t m / n ) A ) - ' A x  - A x  II 

+ tmL([ [ x [1o)(1 - ( tm/n)L([]  x [Io))-ql Ax II. 

Finally, there exists m 3 such that (1.22) < t /4  for all m >__ m 3 by virtue of (1.15). 

Thus, for m > max {ml, m2, ma} 

II (1 tim) (U(tm)X -- X) + (A + B)x 1[ < 8 

which implies (1.18) and the theorem is proved. 

THEOREM 1.5. Suppose that the hypothesis of  Theorem 1.1 is satisfied. 

Suppose further that A + B is m-accretive. Then, for all x ~ X and t >= O, 

lim,_.oo((1 + (tin)B)-1(I + (tin)A)-1)"x 
(1.24) 

= lim,..| + (t]n) (A + B))-"x. 

PROOF. We first observe that l imn._,~(I+(t/n)(A+B))-"x exists for all 

x ~ X, t > 0, by virtue of Theorem I in [4]. Next observe that for z ~ D, 2 > 0, 

(I + 2(A + B))z = (1 + 2A) (I + 2B)z - 22ABz. 

Then, recalling (1.4), we have for all x s D, 2 > 0, 

[] (I + 2(A + B))-lx - (I + 2B)-1(I + 2A)- lx  I[ 

< l[ x - (1  + 2(A + B))(1 + 2B)-~(I + 2A)- 'x  II 
= x2ll AB(t +2B)-1(1 + ~A)-'x II. 

Now let x eD,  t > 0, n > 1, and we have that 

l] (1 + (t /n) (A + B))-"x - ((I + (t/n)B)- l(I + (t /n)A)- ~)"x II 

<= z (t/n)2[[ AB((I + (t/n)B)-l(I + (t/n)A)-l)'x 1[. 
i=l 

By (1.14) we see that (1.24) is true for all x eD. But since D is dense in X, (1.24) 

holds for all x s X. 



Vol. 12, 1972 LINEAR ACCRETIVE OPERATORS 245 

Our final result is due to A. Pazy, whose helpful suggestions in revising this 

paper we gratefully acknowledge. 

THEOREM 1.6. Let A be a densely defined closed linear m-accretive operator 

on X. Let B be accretive everywhere defined and continuous on X. Then,for all 

x ~ X  and t>O, 

lim,_, oo((I + (t/n)B)- 1(1 + (t/n)A)- 1)"x 
(1.25) 

= lim,~oo(I + (t/n)(A + B))-~x. 

PROOF. The existence of lim,_~o~(I+(t/n)(A+B))-"x follows from [13], 

where it was proved that A + B is m-accretive, and Theorem I of [4]. If  we can 

prove that 

(1.26) limz_,o(1/2) (1 - (I + 2B)- 1(I + 2A)-l)x = (A + B)x 

for all x ~ D(A), then (1.25) will follow from Corollary 4.3 of H. Brezis and A. Pazy 

[2]. But (1.26) follows from 

11 (1/2) (I - (I + 2B)- 1(1 + 2A)- 1)x - (A + B)x II 
< [I (1/2) ((I + 2A)-~x - (I + ,~B)-I(I + 2A)- ix) - Bx I[ 

+ I[ (1/2) (x - (I + ).A)- ix) - Ax I[ 

= 1] B(I + 2B)-1(1 + 2A)- 1X -- Bx I] + ]] (I + 2A) - 'Ax  - Ax ]]. 

and the continuity of B. 

2. Examples 

We conclude with two examples illustrating the hypothesis of  Theorem 1.1. 

EXAMPLE 2.1. Let X P =Eto,| l where l < p < o o .  Let A x = - x ' ,  D(A) 

= {x ~X:  x' ~X).  Let b be a continuously differentiable nondecreasing real- 

valued function defined everywhere on the real line R such that b(0)= 0 and 

define B : X ~ X  by (Bx)(s)= b(x(s)) for all x ~ X  such that B x ~ X .  Let Alx  

= - x ' ,  D(A1)= {x ~ Cto,ool: x' ~ Cto,o~l}, where Cto,oo~ is the space of bounded 

uniformly continuous real-valued functions on [0, oo). It is well-known that A is a 

linear m-accretive operator on X, B is a nonlinear m-accretive operator on X, 

and A1 is a linear m-accretive operator on Cto.oop Let D = D(A) c3 D(A1) n D(AB) 

and it is obvious that D is dense in X. We shall verify below the conditions (1.3), 

(1.4), (1.5), and (1.6). 

We show first that (I + 2A)-I(D(A) (3D(A1)) ~_ D(A) ~D(A1) for all ;t > 0. 
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Suppose x e D(A) c3 D(A~) and let y = (l + 2A)- lx. Obviously, y e D(A). Fur- 

thermore, y satisfies uniquely Y ( O -  2y'(t)= x(t) where y ~X. Then, 

So' y(t) = exp (t/2) (y(0) - (1/2) exp ( -  s/2)x(s)ds), 

So y(0) = (1/2) e x p ( -  s/~.)x(s)ds 

(since if y(0) r (1/2) j'~ exp ( -  s/2)x(s) ds, then y r X). But y is also in Cto .~o~ and 

so y satisfies y ( t ) -  2y'(t)= x(0 uniquely for y sCto,| J. Hence, (I + 2A)-~x 

= (I + 2 A l ) - l x  and so y~D(A~) and (I +2A)  -~ and (I +2A1) -~ agree on 

D(A) c~ O(A1). 

We show next that (I + 2B)-I(D(A) c3D(A1)) c_ D(A) C~D(A1). Let x sD(A) 

C~D(AI) and let y = (I + 2B)-~x. Then, y = (I + ,~b)-~(x) and 

y '  = x' /(1 + 2b') ((I + 2B)-ix).  

Since b is nondecreasing and continuously differentiable, y '  e X and y ' e  Cto,| 1. 

Thus, (I + 2B)-~x eD(A) n D(At). Note also that 

II (I + 2B) - ix  IIcEo,~l --< II x !1.o ~,  x ~ D(a) ~ D(hO 

because (I + 2b) -~ is Lipschitz continuous with Lipschitz constant 1 and 

( / +  ).b)-10 = 0. Thus, (l.4) is satisfied, since if x eD(A)nD(A~),  then 

B ( / +  2B)- ~(I + 2A)-~x = (1/2)(I - (I + 2B) -~) (I + 2A)- lx  

and so ( / +  2B)-~(I + 2A)- lx  eD(A) n D(AI) nD(AB). Obviously (1.3) is 

satisfied and the remarks above show that ( l .5)is  satisfied for [[ 11o = [[ [[cto,~ol. 

It remains to show (1.6) Let x ~ D and then 

II ABx II~o.~ = f f l (b'(x) . x')(s)l'ds 

which implies that 

I/ABx tl x ~_ L(ll x Ho)II Ax II x 
where L: [0, oo) - .  [0, oo) is an increasing function such that (b'(r)) < L(I r[) for 

all real numbers r. Thus all the conditions of  Theorem 1.1 are verified. For an 

example of  b in Example 2.1, one could take p = 1 and b(s) = s 3 and we note 

that in this case B is not everywhere defined, not continuous, and D(A) is not 

contained in D(B). 
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EXAMPLE 2.2. Let X = Lit_ | let Ax = - x " ,  D(A) = {x e X: x"e  X}, let b 

be a twice continuously differentiable nondecreasing real-valued function defined 

on the real line R such that b(0) = 0 and define B: X ~ X by (Bx) (s) = b(x(s)) 

for all x e X such that Bx e X.  Let C t_ ~o ool be the space of bounded and uniformly 

continuous realvalued functions on ( -  o% oo). It is well-known that A is a linear 

m-accretive operator on X and B is a nonlinear m-accretive operator on X and 

also on C~-~o,oo~ where its domain is taken as all xeCt_~,oo ~ such that 

Bx e C E_~,~. Let D = D(A) C~ D(AB) n C2(R) = C2(R), where C2o(R) denotes the 

space of twice continuously differentiable functions on R with compact support. 

It is clear that D is dense in X. We shall show that the conditions of  Theorem 1.1 

are all satisfied. 

We first show that (I + 2A)- 1 (C2(R)) c_ C~(R) for all ). > 0. Suppose x e C2(R) 

and let y = (I + 2A)-*x. Thus y satisfies uniquely y ( t ) -  2y"( t )= x(t) where 

y e X. Then, 
t b o O  

y(t) = (1/2 x /~(exp (tx/-2-) J t exp ( -  s/x/2 )x(s) ds 

- exp ( -  t / , ] ~  exp (s / x/-s 

= (1/2 x/T)(exp ( -  t~ x / ~  ft_ exp (s / x/-~x(s)ds 

- exp(t/x/-2) f t e x p ( -  s/,]-~x(s)ds) 

since y satisfies the above differential equation and y e X (note that x e Co(R) 

implies the integrals above exist). From the expressions for y above, it is clear that 

y is twice continuously differentiable with compact support. Hence, (I + 2A) -1 

leaves C~(R) invariant. Note further that 

--< II x x [j (z §  A)- xll rE- 
since A~x = - x", D(A1) = {x e CE_oo,~j: x" e Cr-~o,ool} is an m-accretive linear 

operator on CE_o~,~ol and ( / +  2A) - l x  = (I + ZA1)-Ix for all xeC~(R)  (by the 

uniqueness of the solutions to y -  2 y " =  x). 

Now observe that (I + 2B)-I(CZo(R)) c_ C~(R), since (I + 2B) -1 = (I + 2b)-l(x)  

and b is twice continuously differentiable and nondecreasing. Note also that 

[J (I + 2B)- lx  Itct_| __< II x Jlct_~o,oo f Therefore, (1.4) is satisfied, since if 
x e Co(R) c D(A), 

B(I + 2B)-~(I + ,~A)-~x = (1/2) (I - ( / +  2B) - ' ( I  + 2A)-~x 
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and so (I + 2B)-1(I + 2A)-Ix ~D(A) (~D(AB) C~ C2(R) = D. Obviously (1.3) is 

satisfied and we have established above that condition (1.5) is satisfied for 

[I [!o = II ILcc-~.~. 
Finally, we show (1.6) is satisfied. Let x e D. Then, by integration by parts, 

II ABx I[L',-~ ~, = (b"(X) X'2 + ~'(X~ X")(S)l aS 

=< I[ b"(x) [IcE_~.~ - .,,"(s)x(s)ds + II b'(x) l[cE_~.~ _ ~ (s)J ds 

= (ll b"(x)I!o II x IIo + [I b'(x)Iio)II a x  Ilx 

_<- (zl(ll x I1o)11 x llo + gl(!l x Iio))[I ax llx 

where L~ : [0, oo) -~ [0, oo) is an increasing function such that b'(r) < Lt(] ri) and 

b"(r) < L,(I rl) for all real numbers r. Thus, (1.6) is satisfied with L(r) = L (r~. t 

+ Ll(r) and so all the conditions of Theorem 1.1 are verified. 
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